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ABSTRACT 

4. 
"Solutions of the ray propagation equation are obtained 

for various boundary conditions, assuming vertical incidence 

in plane, parallel, equal-travel-time layers. The solutions 

are examined in ooth the time and frequency domains and 

certain properties derived, A complete discussion of 

frequency-domain synthesis techniques is given in connection 

with a treatment of the absorption problem. FORTRAN programs 

are given which compute any of the solutions in either the 

frequency or time domains, with or without absorption. The. 

theory and programs are applied to the problem of source depth 

determination, and it is shown that the method of pP spectral 

nulls is somewhat unreliable. 
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INTRODUCTION 

Considerable work on ray propagation in multilayered media 

has been reported in the literature (see Claerbout, 1968, for 

references). Most of it has been concerned with calculating 

near-source seismograms for vertically incident waves in loss- 

less media. Claerbout summarized previous results for this case 

in the concise notation of Sherwood and Trorey (1965), and 

included in his paper a computer program to synthesize reflection 

seismograms in the time domain. He also derived the solution for 

the transmission seismogram due to a source buried in the lower 

half-space. Landers and Claerbout (1969) applied the half-space 

transmission solution to a study of crust/upper mantle models 

proposed by Aki. Frasier (1970) has developed solutions for non- 

vertically-incident P and SV waves in non-absorptive media which 

are closely analogous to Claerbout's. 

A totally satisfying treatment of the absorptive case has 

not been given, to the author's knowledge. Trorey (1962) devised 

a time-domain solution using a non-realizable linear absorption 

law. For practical reasons he was forced to lump his absorption 

into a small number of constant-Q bands. His procedure seemed 

cumbersome and no attempt was made by this author to duplicate 

it. Instead, a frequency-domain approach has been utilized. 

Several authors have expressed the fear that this wou>d lead 

to large aliasing errors, but such has not proved to be the 

case. A discussion of practical difficulties is given. Besides 

its simplicity, the frequency-domain calculation has the 

additional advantage that there is no particular problem in 

making one's absorption law realizable. Sherwood and Trorey 

(1965) gave essentially a physical argument that the delayed 
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transmission seismogram must be minimum phase for a minimum- 

phase absorption law. A mathematical proof is presented here. 

A discussion of dispersion is also given. 

Since this work was completed, a paper has appeared 

(Jensen and Ellis, 1970) in which the authors obtain solutions 

for non-vertical incidence plus absorption, using linear system 

theory. They calculate spectra, not seismograms, and they do 

not include disperston. No programs are given. An alternative 

approach to the general problem would be to apply the techniques 

developed here to the solutions given by Frasier. 

The emphasis in the present work has been placed on obtaining 

algorithms which are fast, accurate, and concise, and therefore 

useful for large-scale model studies. The first part of the paper 

is devoted to obtaining lossless transmission solutions for 

various boundary conditions of interest (assuming vertical 

incidence in plane, parallel, equal-travel-time layers). A 

computer program is included to do these calculations (exactly) 

in the time domain. The second part considers the practical 

aspects of frequency-domain absorption calculations. FORTRAN 

programs are included to do all the cases treated in the first 

part in the frequency domain, including frequency- and depth- 

dependent absorption. Versions both with and without dispersion 

are given. 

One application of the theory and programs, to source depth 

determination, is discussed in detail. Sources of error in 

determinations by P-wave spectral nulls or cepstral analysis are 

investigated both theoretically and experimentally. It is shown, 

in particular, that inhomogeneities near the source can produce 

large shifts in the null frequencies from the values predicted 

using a simple echo model. Further, it appears that there is no 
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really practical way to circumvent this effect. Thus a limit 

can be placed on the reliability of this method. 

Certain other applications of the programs are mentioned 

briefly. 
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THE LOSSLESS CASE 

Propagation equation 

For up- and downgoing displacement waves U and D, waves 

at the surface are related to those at depth by the "propagator 

matrix" 

surface v/TTt 

zkF(l/z)   zkG(l/z) 

6(z)      F(z) 
(1) 

Derivation of (1) is given in detail by Claerbout and will not 

be repeated here. (Note that for convenience we factor out a 

transmission factor TT t =   TT^-jt..) F and G are polynomials in 

z, obtained by taking products of k "layer matrices" 

1 
wt 

z  zr 

r  1 
(2) 

j + l 

where z = w 
-IWT represents a unit delay operator, and T 

is the two-way travel-time across each layer (the same for all 

layers) and equals the sampling interval. The (displacement) 

reflection coefficients r are defined at each interface by 

r  = Kva " pbvb)/(pava + pbvb) 
(3) 
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for densities p and velocities v, a^ above and b^ below; and 

the (downgoing) transmission coefficients t are related to 

the reflection coefficients by t = 1 + r. Equation (1) may be 

conveniently viewed in either the time or frequency domains. 

In this paper we consider only problems in which at least 

one free surface is present, and it turns out that in this case 

the quantity of interest in (1) is not F or G, but the combi- 

nation 

A(z) = F(z) - zKG(l/z) (4) 

(A is normalized and is related to Claerbout's M by A(z) = 

n.jt-M(z).) A recursion for A may be developed by multiplying 

the propagator for k-1 layers by an additional layer matrix 

zk-1F(l/z) 

G(z) 

2k-1G(l/2) 

F(z) 
J i_ 

zr, 

rkz
kF(l/z)+zk"1 G(l/z) 

rkzG(z)+F(z) 

from which 

A(k)(z) = [r.zG(z) + F(z)] - [r.zkF(l/z) + z^Gd/z)] 

— 5" 



by definition (4), or 

A^(z) = A^-^Cz) - r/A^-^l/z) (5) 

Claerbout gives essentially this expression. In the time-domain 
this is equivalent to the recursion 

A(k) . .(k-1) =    _ , 

AJ 
(k) _ Ä(k-1) = A 'A^ll   .    i-2 k 

.(k) _ 
lk+l " 

(obtained by putting A^ '(z) = A, + A^z + A3z + + A 
into (5) and identifying coefficients of powers of z). 

k+1 

Half-space 

For the case of an observer located at a free surface and 
an impulsive source buried in a half-space below the layers, 
the boundary conditions are a perfect reflection of the observed 
seismogram X(z) at the surface, a 1 coming up from below, and 
some function P(z) returned into the half-space. The propagation 
equation (1) is thus 

1 

wk nt 

z F(l/z) 

G(z) 

zKG(l/z) 

F(z) 
(6) 
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Inverting and solving for X yields 

X(z) = *k7rf=1(l-r,)/A(z) (7) 

(The determinant in (6) is zkF(l/z)F(z)-zkG(l/z)G(z) = zk1Ti (1-r?), 

from (2).) This is Claerbout's solution. The seismogram due to 

an arbitrary source function S(z) may be obtained by convolving 

the impulse response with S. 

To actually compute (7) we first compute A by means of the 

recursion (5) and then invert. Note that in the programs we do 

our convolutions (multiplications) and deconvolutions (divisions) 

in the time domain for accuracy. In the timedomain, convolution 
2 

and deconvolution are N processes (require a time proportional 
2 

to N for N elements), but since the layer recursion (5) is also 
2 it 

N , little is lost by doing this. Note also that the factor w 

in (7) corresponds to the initial delay of the first arrival, 

but this is ignored in the programs and output commences with 

the first point. 

Source on far surface 

If both observer and source are located at free surfaces, 

boundary conditions are as shown in Figure 1, 

 SURFACE  

fHR ^R 
SURFACE 

Figure 1, Source on far surface 
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R here is some unknown function. The propagation equation 

for this case is 

w t 

Solving for X, 

zkF(l/z)  zkG(l/z) 

G(z) F(z) 

1 + R 

R 

X(z) [A(z) - zkA(l/z)] = wk TT.d-r.) (8) 

Inspection of (5) and (7) shows that the same answer could be 

obtained from the half-space solution by adding an extra layer 

with r = 1 (an obvious result), provided that the layer is 

not included in the transmission factor IT.. (1-r.j). Writing 

A*(z) = A(z) - zkA(l/z), (a definition chat will be used through, 

out this paper), (8) becomes 

X(z) = wkTT(l-r1)/A*(z) (8') 

The inverse wavelet in this case is antisymmetric about its 

midpoint. This implies, among other things, that half the 

information about the layers is lost, that is, one cannot go 

from the seismogram back to the reflection coefficients of 

the layers in this case. Another way to see this is as follows. 

Inverting z in (5), multiplying by rkz and adding to A gives 
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(l.r2k) ^-]){z)  - A(k) (z) + rkz 
(k) 

(1/2) (9) 

which is the inverse recursion that allows us to extract the 

reflection coefficients from the inverse wavelet. In (9) we 

remove layers one at a time, where at each step r^  = -Ak^ is 
(k) ^ 

lk+l 1 

the last boundary. Evidently (9) blows up when any rk = + 1. 

This result has an interesting physical interpretation. 

Consider the propagator of an inverted layer set. If the 

normal case is written 

U' u 

D' 
= Q 

D 
L-   —1 1-     -l 

we write the inverted case 

"     — —           mm 

D 
- Q 

D' 

U U' 

by inspection of Figures 2 and 3. 

U' 

U 

^f 

Ü 

1 
r2 
r3 

T7 k T
 D 

iL. 

U' 

-r. 

Figure 2. Normal case Figure 3. Layers inverted 



Comparison with (1) gives 

mz) - T 
vTlKl-r^) 

zKF(l/z) 

•zkG(l/z) 

■G(z) 

F(z) 

(10) 

This can also be obtained from (1) by a time reversal, z 

plus a matrix inversion, i.e. ^(z) = Q^d/z). Writing 

A(z) = F(z) + 6(z), by analogy with (4), we have 

1/z, 

k T, f{z)  • Mz)   - z A(l/z) 

= [F(z) + G(z)] -zk[F(l/z) + G(l/z)] 

= A(z) - zkA(l/z) 

or 

^(z) A*(z) (ID 

Thus the antisymmetric combination is invariant under an 

inversion of the layers. Comparing this with (8'). we see 

that interchanging source and receiver gives the same seismo- 

gram. except for a scale factor (reciprocity), i.e. one 
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cannot tell, from the seismogram, which side of the earth is 

which. 

In principle, a reflection coefficient slightly less than 

unity removes the difficulty associated with (9), but in 
2 

practice the requirement is that 1-r must not be so small as 

to make the recursion unstable. In any case, the actual reflec- 

tion coefficient of the distant free surface is just the ratio 

of the last to first points of the inverse wavelet. The 

presence of absorption will change these results drastically. 

In fact the inverse problem is then not do-able even in the 

half-space case (at least not using the techniques discussed 

here), essentially because one is required to obtain 2k items 

of information from only k items of data. 

Contained source 

Of some interest is the case of a source buried in a 

layer stack terminated at both ends by free surfaces. This 

case may be easily treated by coupling half-space solutions 

back to back (Figure 4)., 

ref. 

ref. 

1 
] 

SURFACE 
TT W 

M 21 
SURFACE 

Figure 4. Burled source 
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We assume the source to be located in a trivial (r = 0) inter- 

face common to the two layer stacks. The transmitted wave due 
to a source B(z) is, by (7), 

X(z) = w^.d-r.) B(z)/A(z) (7') 

The wave returned from the half-space may be obtained by 
solving (6) for P 

P(z) = wk A(l/z) X(z) /TT^l-r.) (12a) 

= zk B(z) A(l/z) /A(z) (12b) 

Primes will be used to denote quantities associated with the 

distant stack. From Figure 4, the coupling relations are 

B(z) = S(z) - P'fz) (13) 

B'U) = S(z) - P(z) (13') 

for a spatially symmetric source S(z). The minus signs in (13) 

are necessary to take account of the change in reference 

direction of the (displacement) waves between the two layer 

sets. Substituting (12a) into (13'), (13') into (12b) (primed), 

and the result into (13) gives 

-12- 



B(z)   =   S(z) zV   [S(z)   - w 
TTd-r.) 

A(l/z)X(z)] ilÜZlI 
A'(z) 

Using   (7')   and  collecting   terms 

[A(z)A'(z) z^'   A(l/z)A'(l/z)] X(z) 

= wk7r  (1-r.) [A'(z) 
i = l   1 

(14) 

z^   A'(l/z)] S(z) 

Note that the filter on the LHS of (14) is antisymmetric and 

depends on all the layers, whereas the filter on the RHS, 

which is also antisymmetric, depends only on the layers lying 

between the source and the far surface. 

A comparison w-'th the far-surface solution (8) is tempting, 

but in that case one reference direction was used for all 

layers, whereas in this case we have decomposed the stack into 

two opposing substacks. To make the comparison, we should write 

the propagator for the whole stack in terms of the two substacks 

This is just the product of the propagator for the near stack 

and the prt  'ator for the far stack inverted, i.e. QT = Q 0 IJ"'. 

From (1) and . :) this is 

QT " 
w*TTt 

zKF(l/z)  zKG(l/z) 

G(z) 

1 
w^rrd-rj) 

F(z) 

F'd/z) 

-z^G'O/z) 
.1 •G'(z) 

r{z)\ 

k+k w^TTd+r-nTd-rl) 

.G'(z)zkF(l/z)+F,(z)zkG(l/z) 

-G'(z)G(z)+F'(z)F(z) 

13- 



from which 

AT(z) = F'(z) A(z) + G'{z)zkA(l/z) 

by (4), and 

A* 5 AT(zj-z 
T AT(l/z) 

s A(z)A,(z)-zk+k, A(l/z)A,(l/z) = (AA1)' 

(15) 

Putting this result in (14) gives 

*    .k, k-1 AT(z) X(z) = wKrr  (1-rJ A'^z) S(z) 
1 i = l   1 

(14') 

Comparison of (14') with (8') shows that the only difference is 

in the RHS of (14'), that is, one obtains the same seismogram 

from a source S„ located at the far surface as from a buried s 
source S^  provided 

S,(z) - k.
A,*(z?  Sb(z) s    wk TTd+rj) b 

(15) 

(The change in the sign of the reflection coefficients arises 
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because we have considered the primed stack to be ordered 

from the far surface down. Actually, theorem (11) says that 

we may calculate A'* from the reversed stack as well, in 

order to be consistent with the calculation of A T. This is 

done in the programs). Thus (15) represents a "source-burying 

operator" which describes the effect of burying the source 

in terms of the layers between the far surface and the source. 

Remembering that A'* is antisymmetric about its midpoint, 

which represents the depth of the source in travel-time 

(sampling-rate) units, we might hope to use this fact in 

source depth determination. If one could isolate A'  by some 

means, then the least-squares point of antisymmetry would 

give the depth. For example, if a seismogram Xs were available 

from an identical source lying along the same path at the 

surface, then comparison with the buried-source seismogram 

Xb would give 

VXs - *'* 

ignoring scale and delay factors. This method suffers from 

certain obvious disadvantages. A more direct approach would 

be to look for zeros of Xb. This has been done in the past 

(cepstrum analysis) and suffers principally from the effect 

of the source window S(z). A study of the limitations of the 

method is presented below under Applications. An alternative 

derivation of the buried-source operator given in the next 

section shows that the result is general. 
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Source-burying operator: 

An alternative derivation of the source-burying operator 

can be given by comparing (distant) half-space solutions for a 

far-surface source and requiring that the incoming and outgoing 

waves be identical for the two cases (Figures 5 and 6). 

il 
TT 

© 
TT+s. 

TT 

TT Tx 

Figure 5. Surface source Figure 6. Buried source 

For a surface source, the propagation equation (1) is 

R 

R + S, wknt 

zkF(l/z)  zk6(l/z) 

G(z) F(z) 
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Solving for T gives 

wkn(l+r.)     zkA(l/z) 
T =  L. s +   B 

A(z)    s    A(z) 
(16) 

The solution for the buried-source case is given by (12b) with 

source B-S (the minus being necessary to keep the reference 

direction consistent with the previous case), i.e. 

P = [zkA(l/z) / A(z)] (B-S) 

Then 

P + S 
A(z):z

KA(l/z) 
A(z) S + 

zkA Bf5 (17) 

Identifying T in (16) with P + S in (17) gives 

A(z)-zKA(l/z) s 

wkn(i+ri) 
(15) 

as before. 

In the buried-source solutions we have so far considered 

only the case of a source located within a homogeneous layer. If 

the source is located in a reflecting interface, we can modify 

the above derivation by explicitly considering the reflections 

at the additional interface. If this boundary has reflection 

-17- 



coefficient c, instead of (15) we obtain 

S  = A(z) - (U2c) zKA(1/z) s 

s     wkn(l+r.) 
(18) 

This resembles the previous result with, however, a surface 

reflection coefficient r ■ l+2c. (This can easily be proved 

by inverting the stacks in Figures 5 and 6 and going through 

the calculation assuming a surface reflection coefficient r 

other than unity). 

We can also modify the previous derivation to include the 

case of a spatially asymmetric source. If in Figure 6 we 

replace the upcoming (toward the surface) part of the source 

function by S'U), then it is easy to show that (15) becomes 

= A(z)S(z) - 2KA(l/z)$'(z) 

wkn(l+r.) 
(19) 

If S(z) and S'(z) have identical time behavior but differ by 

a scale factor (for example, an earthquake with an asymmetrical 

radiation pattern) then (19) will have the form of (18). The 

programs have not been written to handle these cases, but it 

would be easy to modify them to do so, simply by redefining 

the value of the terminal reflection coefficient between calls 

to the inner computation routine (RCTOA). 

Buried-receiver operator 

The results we have obtained have assumed the receiver to 
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be located at the surface. A "buried-receiver operator", 

analogous to the buried-source operator, can be derived 

which relates the seismogram received by a buried receiver 

to that received by a surface receiver lying on the same 

path. This operator depends only on the layers lying between 

the buried receiver and the surface and could be used to 

relate the signals received by sensors in a vertical array. 

Consider a sensor located in a trivial boundary which 

terminates the upper layer set, as shown in Figure 7. 

SURFACE 

Figure 7, Buried receiver 

For a wave X (z) coming from below and a wave P(z) returning 

from above, the observed seismogram X(z) will be the sum (all 

are displacement waves), i.e. 

X(z) = Xo(z) + P(z) 

19- 



By (12b) 

p = zkA(1/z) x 

A(z)   0 

and from (71) 

wkn(l-r.) 
Xe =  —  Xn 
S    A(z)    0 

Combining we get 

k 
X = M^)/ z-A(1/z)  x (20) 

v^nd-r.)     s 

This differs from (15) in that the buried-receiver operator 
(20) is symmetric. The discussion associated with (9) still 
applies, that is, we should not expect to be able to go from 
the ghosting filter for our array back to the reflection 
coefficients of the layers. Inspection of the derivation lead- 
ing to (11), however, shows that a similar result does not 
hold for the symmetric case, i.e. the symmetric combination 
is not invariant under an inversion of the layers. 

As with the buried-source operator, we can remove the 
restriction that the sensor be located within a homogeneous 
layer and allow it to be located at a non-trivial interface. 
This case is somewhat less interesting than the corresponding 
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extension for the source operator, but it is easy to do. The 

result 

x . A(z) + (l-c) zKA(1/.) x 

w^d-r^d-c)     s 
(21) 

if the interface containing the receiver has reflection 

coefficient c. 
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ABSORPTION AND THE FREQUENCY-DOMAIN 

CALCULATION 

So far we have viewed our solutions in the time domain, 

but we could equally well view them in the frequency domain. 

The z-transform formulation gives us the vantage point of 

Janus in being able to see both worlds at once. This is the 

power of the equal-travel-time assumption. While it is not 

strictly necessary to retain this assumption in the frequency- 

domain calculation, it is convenient for our purposes to do 

so. Considering simplicity, speed, and accuracy, the time- 

domain solution is undoubtedly the correct approach in the 

absence of absorption; but since we now wish to treat the 

general case of frequency- and depth-dependent rbsorption, 

a frequency-domain approach will henceforth be necessary. 

(See Trorey, 1962, for an example of what is encountered 

in attempting a time-domain solution for this case). The 

transition to the frequency domain is easily made by noting 

the definition z = e"lu,T. Then instead of representing 

polynomials in z, our expressions can be considered to be 

complex functions of frequency. Since we wish a discrete, 

sampled time function with sampling interval T and will be 

using a Discrete Fourier Transform (DFT) to obtain it from 

the frequency function, we will take as our phase interval 

Awx = 2TT/M, where M is the number of time or frequency points 

desired (see Rader and Gold, 1969, for a discussion of 

Discrete Fourier Transform theory, and Sherwood and Trorey, 

1965, for a discussion of the z-transform). 
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Propagator with absorption 

Following Sherwood and Trorey, we can obtain the layer 

matrix from (2) by noting that z represents the two-way delay in 

crossing the layer. With absorption present, the wave will 

be further modified. If we represent our (one-way) absorption 

law by f{z), then replacing z by zf2(z) and w by wf(z) gives 

the layer matrix with absorption 

1 

wtf(z) 

zf2(z)   zf2(z)r 

j + l 

(22) 

We then write the propagator (1) in the form 

surface   w^t.f^z) 

F'fz) G'(z) 

G(z)  F(z) 

(23) 

where F' and G1 are related to F and G. (We take Claerbout's 

form for our layer matrix, rather than Sherwood and Trorey's. 

In ours, the absorptive band fk lies above the boundary rk). 

Again, we will be interested only in the combinations 
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A(z) = F(z) - 6'(z) 

A'U) = F'{z) - G(z) 
(24) 

defined by analogy with (4). We develop recursions for A and 

A1 in the same manner as in the lossless case. Multiplying 

the propagator by an additional layer matrix. 

L 

F'U)  G'(z) 

G(z)   F(z) 

zf? F' + r.G' 

zfk G + rkF 

zf2(z)    zfk(z)rk 

1 

zfk ^k^ + G> 

zf^ rkG + F 

from which we obtain 

Ak(z) = [F{z) - G'(z)] + zf2(z)rk [6(z) - F'(z)] 

Aj;(z) = rk [G'{z) - F(z)] + zfj^z) [F'(z) - G(z)] 

or 

Ak(z) = A^^z) - zf2(z)rkA'_1(z) 

Ak^) ■ " rkAk-l(2) + 2fk^) Ak.l(2) 

(25) 
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corresponding to (5). (To avoid conflict, we now use sub- 

scripts to indicate the iterative step.) In the absence of 

absorption. fkU) ■ 1, and it is easy to show from (25) that 

in this case A^z) = zkAk(l/z), which gives back (5). At each 

frequency, (25) represents a set of coupled recursions over 

layers in the complex quantitites A, A', z, and f. Initially, 

A^z) = Aj(z) = 1. 

Since we require a real time function A(t), A(a)) must be 

conjugate-symmetric about zero frequency. This implies that we 

need only calculate A(a)) for positive frequencies (up to the 

folding phase, u). This also implies that f(z) must be 

conjugate-symmetric (the "crossing symmetry" relations of 

Futterman, 1962) in order that (25) will lead to a conjugate 

symmetric function. 

We will take as our absorption law 

fk(<-) - e-la,Tl/4Qk + i<J.k(a)) (26) 

where (l>(w) represents the dispersive contribution to the phase, 

and Q conforms to the usual definition of the quality factor. 

This "linear absorption law" has been experimentally verified 

in rocks (see Trorey, 1962, for references) and appears to be 

the best choice for a calculation of this type. Neglecting 

dispersion (discussed below), f = exp (-|WT|/4Q) and we can 

use efficient recursions over frequency to calculate the 

exponential and the sines and cosines in (25). 

We see here th*> difficulty with the time-domain calculation 

of (25). For each layer added, wa must do two complete 
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convolutions. Thus this procedure is N . For small absorption, 

our filter will have short effective length, so we might still 

get by. The alternative is to use Trorey's approach. In either 

case, one is also faced with the necessity of obtaining a time 

representation of (26) for each layer. 

Absorptive solutions 

Knowing how to calculate A, we can immediately transcribe 

all our solutions to include absorption by the technique used 

to obtain (22). We list the results here for reference. 

X = wKTr (l-ri)fi(z)/A(z); half-space (27) 

k    k 
X  =  w T]r T   (l-r.Jf.U)  /  A*(z);  far-surface (28) 

X  = wT   (l-r.)f.(z)   B*(z)   /  AT(z);   buried-source 
1 

(29) 

X  =  B*(z)   /  w^TT   (l-r.)f.(z); 
i 1     1 

b.   source operator      (30) 

X = A+(z) / wkir (l-rJMz); 
i 

b. receiver operator (31) 

To avoid conflict we have used B to refer to the distant 

layer stack, which we have also inverted (stacked away from 

observer) so as to be consistent. A careful calculation of the 

•26- 



buried-source operator for this case shows (29) and (30) to be 

the correct forms. Here A =  A(z) - z fk(z) A'fz), which is 

calculated by addition of the far surface rk = 1 (which must 

not be included in the transmission factors in 28 and 30). 

Evidently A  is no longer antisymmetric.  Similarly, 

A+ E A(z) + zfk(z) A'(z). 

Proof of minimum-phase 

Claerbout gives an inductive proof based on (5) that 

A(z) must be minimum phase in the lossless case. (See Sherwood 

and Trorey for a discussion of the terms "minimum phase", 

"realizable", and "positive-real" and their application to 

seismic problems). By a slight modification of his argument, 

it is possible to show directly from (25) that A(z) must in 

fact oe minimum phase for any realizable absorption law f(z). 

We rewrite (25) in the form 

Ak(z) 

'k-l Tz) 
= 1 - vl zr.nU) 

A' (z) 
^T?y (32) 

At(z) 

A^U) 
= zf^(z) 

Ak-l(z) 

A^U) 
(33) 

Assuming f(z) has no poles inside the unit circle (i.e. is 

realizable), then we need only to show that Ik'/bl^}   on the 

unit circle to complete Claerbout's proof. (It is evident from 
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the structure of (25) that A'U) must be realizable when f 

is.) 

Lemma;  |A,(z)/A(z)| < 1 when |z| = 1 (34) 

Proof: We prove (34) by induction. Writing ak(z) = Aii(z)/Ak(z), 

then dividing (33) by (32) gives 

ak = ak-l 

zfk  -  ^/ak-l 

^^k^^-l 

rk - 2Vk-l 
1   -  zrkfkak-l 

We must show that |ak| < 1 when |ak.1| < 1, i.e., we require 

rk "  zfk "k-l 1111- zr''f?a 
kTkak-l 

(35) 

given  that   |z|   =  1.   |fk|   < 1,  and   |rk|   <  1.  We establish   (35) 

by contradiction,   i.e.,  assume 

lrk  " zfkak-ll >   11   -  zr.f^ a k'k uk-l 

or 
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2     2 
zfk ak-ll  + r2 - 2 Ra(rzf2a) 

> r2|zf2 o^^2 + 1-2 Re(rzf2oi) 

Since Izl = 1, we have 

fkak.ii2 + 'i; * '■kifkak.ii2t' 

If   |f? ak  J  ■  li we have  the desired contradiction;   if not, 

we can only have   | f2 a^-, |   <  1,  by the assumptions.  Collecting 

terms we get 

r2  [1   -   |fj; a^,!2]   >  1   -   IfJS-ll 

Since the common factor must be positive, we can divide and 

obtain r? > 1, a contradiction. Since a1 = 1, the lemma is 

provided. 

Having proved the crucial addition, we restate Claerbout's 

proof. Assume A^, is minimum phase. Assuming f is realizable, 

(32) must be realizable. Further, the second term must have 

magnitude less than or equal to unity on the unit circle, by 

the Lemma. Hence its real part must be less than or equal to 

unity and therefore (32) must have positive real part on the 

unit circle. Since all Ak represent real time functions, (32) 

must be real when z is real. Therefore (32) is "positive-real" 
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and hence minimum phase. Thus A. is minimum phase whenever 

A., is. Since A, = 1, all Ak must be minimum phase. 

The minimum-phase condition on A(z) is necessary in order 

that we may obtain realizable seismograms. Inspection of (27) 

shows that if our absorption law f(z) is also minimum phase, 

then we actually obtain minimum-phase seismograms, provided 

we remove the initial delay. This is true even in the case 

of two free surfaces (rk = 1) (note, however, that this may 

introduce poles or zeros on_ the unit circle). 

Pi spersion 

The key requirement in the above discussion was the physical 

realizability of f(z). The zero-phase absorption law f ■ 
exp(-|a)T|/4Q) is evidently not realizable, since real symmetric 

frequency functions possess real symmetric time transforms. 

Hence f(t) possesses non-causal precursor before time t = 0. 

Futterman (1962) has derived a relation between the amplitude 

and phase parts of (26) based on causality (Kramers-Kronig 

dispersion relations). He shows that the real part of the index 

of refraction can be related to the imaginary part by the 

Hilbert transform 

Re An(ü)) = i (36) 

and he obtains a simple form for the phase in the case of a 

linear absorption law (26). He uses the infinite Hilbert trans- 

form, but since we are performing a discrete, frequency-limited 

synthesis, we might expect the finite Hilbert transform 
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♦ (w) 1 
77 

-IT 

log|fa(ß)|  cot £jjS dn (37) 

to work better. Such is the case. In (37) fa represents the 

absorptive part of (26) and 4» is the dispersive phase. (Note 

that in this section we use w to mean WT. Obviously the argu- 

ments in (37) must be dimensionless.) It can be shown (Rader 

and Gold, 1969) that functions for which the phase is the 

Hilbert transform of the log magnitude are actually minimum 

phase. Thus we make our absorption law minimum phase. 

Putting (26) into (37) gives 

♦ (w) ■ 
1 

TI 

n|cot ^ß m (38) 

for our phase. Reducing (38) to the range of positive fre- 

quencies and integrating by parts gives a term which vanishes 

plus a term involving i log sin u du, for which no explicit 

form exists. It can, however, be expressed in terms of 

"Lobatchevsky's function", for which a series expansion is 

given by Gradshteyn and Ryzhik (1965). Carrying out the 

algebra gives 

(j)(ü)) = "'S TFIT 
k odd 

sin kg) (39) 

which is exactly the result one would obtain by deriving the 

frequency-domain Hilbert transform (i.e. interchanging sine 

and cosine coefficients and changing the parity) of the 
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function |fi|/4Q. Thus we appear to be stuck with (39).  Actually, 

it turns out that the most successful procedure is just to do 

the frequency-domain Hilbert transform using the FFT (Fast 

Fourier Transform). Synthesizing 4 from (39) using the inverse 

FFT was slightly less successful, supporting our original 

supposition that when doing discrete synthesis it is best to 

remain entirely within the discrete realm (observe that (39) 

represents an infinite sum and the coefficients 1/k were 

obtained by doing an integral). Futterman's phase did quite 

a bit worse. The criteria in all these cases was the observed 

realizability of f(t). 

Several properties of the discrete dispersive phase are 

immediately evident from (39), namely <l>{0)  * tin)   =  0. Further- 
more, <j) has an extremum at TT/2 about which it is symmetric: 

*(J) - ^S  (-l)k/(2k+l)2 G/TTQ (40) 

k=0 

where G = .91596559...  is Catalan^ constant and G/TT S .2915609. 

Using these properties, an empirical approximation to (39) was 

obtained. 

({)(ü)) = -G log [1 + ü)(TT-ü))] /TTQ log (1 + u /4) (41) 

While this form was not used in the programs, it might be i-seful 

in some applications. It fits fairly well, but actually it is 

not much more trouble just to compute the Hilbert transform. 
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Having a procedure to compute the phase, we have all the 

elements needed to complete our frequency synthesis. Using a 

dispersive absorption law in (25) requires the explicit compu- 

tation of all the sines and cosines and consequently more 

computing time. For comparison, routines were written with and 

without dispersion in A(z). In both cases, dispersion was 

included in the straight-through transmission filter (the 

numerator in 27-29). This is just given by (26) with a dis- 

sipation factor Ll/Qi» which can be large for many layers, even 

in the case of high Q. Comparison of the semi-dispersive and 

complete dispersive calculations is given in Figure 8. Running 

time for the dispersive calculation was only -1.5 times as long 

as for the semi-dispersive case, but the semi-dispersive routines 

have also been included here because of their simplicity. 

Inversion methods 

We have delayed until now a discussion of the chief difficulty 

with the frequency-domain calculation: aliasing, as it is called by 

most authors. A function that is synthesized in the frequency domain 

and is not time-limited will have a time transform in which later 

times are folded over into earlier times, since the computed spectrum 

is the spectrum of the entire record and since the DFT treats time 

functions as though they were periodic (Rader and Gold). Several 

authors have mentioned the effect in connection with this problem, 

but evidently none has diagnosed the real difficulty. The key, it 

turns out, lies in the method of performing the deconvolutions 

in (27-31). From time-domain theory, we know that the inverse 

wavelet A(t) has a finite length equal to the number of layers 

(in the lossless case), whereas the seismogram X(t) has in 

principle infinite length (and in the case of two free surfaces, 

i.e. (28) and (29), does not decay at all). This indicates that 
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it would be better to transform the numerator and denominator, 

n.f.(z) arm A(z), into the time domain and do a time-domain 

deconvolution than to divide in the frequency domain and then 

transform. Using the first procedure we should get zero aliasing 

error in t.he lossless case, provided we take at least as many 

frequencies, M, as layers, K. In fact, comparing the output 

from the time and frequency routines, LAYERS and FLAYERS, with 

infinite Q and random reflection coefficients, gave agreement 

to 8-11 significant Jigits. Tests performed using frequency- 

domain deconvolution, however, gave results whose accuracy 

depended critically on M. The error in this is "wraparound error", 

due to the fact that frequency-domain deconvolution is circular, 

whereas time-domain deconvolution is not. Thus the real villain 

is wraparound, not al' "ing. 

In the absorptive case, A(t) is not strictly finite in 

length, but develops a rapidly decaying tail. Thus some aliasing 

error will develop in this case, but in general A(t) is still 

much better-behaved than X(t), and one can make the effect 

negligible by choosing M large enough. Since the tail on A 

decreases monotonically*, one can always determine by inspection 

in any case whether aliasing has been significant. This is 

definitely not the case with X. Values of M about 20% larger 

than K have been used successfully for reasonable Q's, and it 

would probably never be necessary to use values as high as 2K. 

♦Inspection of (25) shows that the highest-order term in 

A(z) is zkrknif .2(z), so that the tail behaves like the overall 

transmission filter with twice the dissipation factor. Thus 

for any "buffer" allowance M-K, the error will be a function 

of the total dissipation factor. 
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Another point that should be mentioned here concerns the 

way (22) was factored. If. instead, the inverse absorption were 

left inside the matrix, then instead of (25) we would have 

Ajz)  =  flUz)  A^U)  -  zVz)rkAk-l (z) 

AMz) =.-r^-^z) Ak-1(2) + zfk(z)A|;.1(z) 

and in the numerators of (27-29) we would have only a scalar 

transmission factor. This approach is tempting because of its 

simplicity, but unfortunately it is numerically very unstable 

for low Q's. The approach we have used, however, appears to 

be completely stable for the first three cases (27-29). even 

for very low Q's. The last two cases (30. 31) are stable for 

reasonable Q's. but in all likelihood the "burying operators" 

would be computed only for rather few layers anyway. 
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EXAMPLES 

Examples of calculated selsmograms are given In Figure 8. 

Nonabsorptive, absorptive, and absorptive-dispersive seismo- 

grams are compared for each of four different realizations of 

random layer structures. Each structure consists of 100 layers 

terminated at each end by free surfaces. Reflection coefficients 

were drawn from a uniform distribution on (-.3, .3) and Q's 

were drawn from a "log-uniform" distribution, lying between 

32 and 320, centered on 100. The source (a spike) was buried 

10 layers down from the far surface. This model is admittedly 

not very realistic and is intended primarily to illustrate 

the effects of absorption. Two effects are to be noted: a 

general smoothing of the seismogram, due to the low-pass 

transmission filter-in the numerator, and a progressive 

simplification down the record, due to the inclusion of 

absorption in A(z). Inclusion of dispersion in A had rather 

little effect, although this naturally depends on the dissipa- 

tion (39). 
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APPLICATIONS 

Of several applications of the routines which have 

already been made, one will be described here: testing the 

reliability of pP depth-determination procedures. Another 

application, generating data to test a homomorphic filter 

program designed to reduce convolutional noise by beaming 

in the pseudo-time domain (complex cepstrum), is being made 

by P. R. Lintz. Quasi-realistic model studies are also being 

carried on by R.L. Sax. Some work has also been done on 

statistical behavior of synthetic seismogram spectra, which 

will be reported in the future. 

Source depth determination 

The numerator of the buried-source solution (14) contains 

the source depth Information. One might hope to retrieve this 

information by an analysis of the spectral zeroes of the 

seismogram, since the denominator, which is the total-path 

filter, contributes only poles. As previously mentioned, this 

has been done (Cohen, 1970). The usual procedure is to smooth 

out the poles and enhance the visibility of the zeroes by 

averaging spectra from several stations for the same event. 

Actually, the receiver-end effect can in practice be 

factored out of (14). Assuming only weak reflectors deep in 

the mantle (disregarding core phases), (5) says that A(z) 

will be fairly short. The derivation leading to (15) applies 

to any decomposition of the path, so we may split the path 

in the middle. Then writing A for the layers above the source, 

B for all those on the source end, and C for the receiver-end 

layers, we can write (14) 
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X(2) - A*(z) / [B(z) C(z) - zkT B(l/z) C(l/z)] 

If both B and C are effectively short compared with the path 

length k-r, and if we confine our attention to the first part 

of the sei smog ram, then 

X - A (z) / B(2) C(z) 

Averaging over stations gives 

X ~ [A*(2) / B(z)] • ^.[l/C.U)] (42) 

assuming that A and B are nearly the same for each station. 

The C. will usually be quite different and the average will 

tend to smooth out the effect of these. Thus we are usually 

justified in ignoring receiver-end effects provided we average 

over stations. 

Confining our attention to the numerator A , in the 

absence of reflectors this is just 1-z for a source buried 

k layers deep. The power spectrum is then 

PU) = ll-e •ikuT = 2(l-cos kwt) 

•38- 



which has nulls at integer multiples of f0 = l/kx. Thus 

measuring the null periodicity gives the depth of the source 

in time units: td = l/2f0. In practice, one is usually 

restricted to measuring the first null frequency because of 

the effect of the source window. Another means of determining 

the periodicity is to take the spectrum of the spectrum (the 

cepstrjm; see Cohen*. 1970). 

Cohen has applied the method to real data, with mixed 

results. Conversion of pP delay times to depths requires the 

application of an "average velocity" and the resultant depth 

estimates will evidently be only as accurate as the velocity 

assumed. Errors of this nature could explain the discrepancies 

observed by Cohen. Another possible source of error, investigated 

here, is the effect of reflectors on the null frequencies. It 

turns out that introduction of rather few layers with reason- 

able reflection coefficients can produce large shifts in the 

nulls. In principle, the cepstrum should provide a more stable 

estimate of the nulls, but in practice the cepstrum can also 

become quite messy. 

The effect of reflectors can be seen by writing the 

source-burying operator A . the numerator in (42). in the form 

A*(z) = [1 - zkA(l/z)/M(7)] A(z) (43) 

♦Actually. Cohen zeroes out the .negative-frequency part of the 
spectrum before transforming. It car: bf: si.own that this "cepstrum" 

is just the squared envelope of the autocorrelation. This is 

also evident from his plots. Our "cepstrum". however, is just 

the square of the autocorrelation. 
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Since |A(l/z)/A(z)| = 1, A*(z) will still have zeroes on the unit 

circle, although they will no longer be equally spaced if 

A(z) / 1. Evidently A(z) itself will contribute no zeroes on 

the unit circle, by Claerbout's proof or by consideration of 

(5). The number of zeroes, and hence the average spacing, will 

therefore remain the same. Thus the cepstrum should provide 

a stable estimate where inspection of null spacing fails. 

(Large subsurface reflectors would, however, put additional 

zeroes close to  the unit circle, which would contribute to 

the cepstrum in the form of peaks at shorter delay times). 

This is shown in Figure 9, in which the ideal case is compared 

with cases having inhomogeneities above the source. (The first 

plot in this and succeeding figures is for a homogeneous medium 

between the source and surface. The other theee are realizations 

of random structures, all with the same source-depth delay time. 

The random reflection coefficients in the latter cases are 

drawn from a uniform distribution on [-.3, .3] with zero mean. 

There are 15 interfaces above the source, excluding the surface, 

i.e. this could represent a delay time of 1.6 seconds with a 

sampling rate of 20 sps. These and most of the following plots 

are 4-decade semi-log plots.) Although the null spacings vary 

widely, the true delay times (marked by arrows) are given in 

each case by the "break" in the cepstrum. If we consider the 

denominator in (42) also, and allow layers below the source 

as well, then this criterion breaks down and we see cepstral 

peaks at longer delay times (Figure 10: reflection coefficients 

above the source are the same; in addition, there are 15 below 

drawn from the same population). Including a source causes 

further complications (Figure 11). (The source function is an 

empirical one of Cohen's). Convolution with a source results 

in a multiplication (or modulation) of the cosine ripple by 

the source spectrum. In the cepstrum, the result is the source 
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cepstrum plus the echo cepstrum plus the sum and difference 

(beats). Taking the logarithm of the spectrum before trans- 

forming makes the source and echo additive and produces the 

sum of the two log cepstra upon transformation. This tends to 

simplify the cepstrum somewhat, and appears to improve the 

accuracy (Figure 12). 

Actually, the behavior of the log cepstra observed in 

Figure 12 was borne out by 47 random realizations of the same 

type, that is, there was almost always a sizable peak at the 

correct delay time, although it was not always the biggest 

one. (In some cases, choosing the biggest peak would lead to 

considerable errors.) It was expected that the presence of 

noise would tend to nullify any advantage possessed by the log 

cepstrum over the linear cepstrum. In a rough attempt to model 

this situation, log cepstra were computed for the same 47 

realizations, with the spectra clipped at 1/30 of the maximum 

(~ - 15 db). The first three cases, with the standard, are 

shown in Figure 13. As anticipated, any superiority largely 

disappears. Only 14 cases of the 47 yielded the correct answer, 

compared with 29 correct answers in the absence of noise (these 

numbers are subjective). In addition, there is little tendency 

towards any peak at all at the correct delay time, much like 

the behavior of the linear cepstra (which also gave 14 correct, 

or nearly-correcty, answers out of 47). The characters of the 

"noisy" log cepstra and the linear cepstra are remarkably 

similar. 

Since our "cepstra" are really just the square of the 

autocorrelation, one might suppose the autocorrelation itself 

to be less confusing by a factor of two, since it contains 

phase information. (Cohen uses the product of the autocorrelation 

with his square-envelope autocorrelation. 
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This results in a peaky, smooth representation, convenient for 

visual analysis, but of course it is no more accurate than the 

autocorrelation itself.) In Figure 14 we plot the signed square 

of the autocorrelation for the same cases so far considered. 

(For convenience in plotting, the peak at zero delay is zeroed out, 

These are linear plots.) The correct delay time should be 

marked by a large negative peak. In fact, in one realization 

there are no large negative peaks! This is of course embarrassing, 

and tends to indicate the general unreliability of auto- 

correlation/cepstrum analysis. 

Assuming then, that the ultimate arbiter must be the 

position of the first spectral null, since for shallow sources 

it is usually the only one visible, it was decided to try to 

determine just how variable this criterion might be. A hundred 

realizations of the type discussed (IS layers above the source 

and 15 below, reflection coefficients between -.3 and +.3, 

source depth fixed in time units) were drawn and the standard 

deviation of the observed first null position from the correct 

answer determined. This turned out to be about 25% of the 

correct answer. The maximum deviation observed is somewhat 

open to debate. There are several cases among the hundred 

where it seems unlikely that, in the presence of noise and 

other factors, the first null would be seen and correctly 

identified. Two such cases are shown in Figure 15. In all 

likelihood, the second nulls would be the ones picked here 

(remember that these are logarithmic plots). Thus it seems 

that this criterion could be off by a factor of at least two 

in some cases. Studies made with a deeper source indicate that 

it might be off even more, the effect being that a deep source 

can masquerade as a shallow one. Three such cases out of 15 

are shown in Figure 16 (linear plots). The sources are 4 times 
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as deep as before, 63 interfaces above the source (drawn 

from the same population as before) and none below. A 

fairly broad null falsely indicating shallow depth occurs 

in all of these and, interestingly, the cepstrum seems to 

substantiate the false nulls. The question here is whether 

the high-frequency ripple in the spectrum would be visible 

enough to tip off the analyst. At least one deep earthquake 

has been seen with such a spectrum (Cohen, private communi- 

cation). 

Inclusion of absorption might be expected to weaken the 

nulls, but for the cases computed here, it actually had 

rather little effect (Figure 17). (All layers assumed to 

have Q = 50. The long transmission path through the earth 

was ignored, since it would not effect the low frequency nulls 

and since it is more or less included in Cohen's "source".) 

Non-vertical incidence, which is not treated in this paper, 

could be expected to produce further complications. 

In conclusion, inhomogeneities of the type which may be 

found in sedimentary regions* can cause large errors in source 

depth delay times determined from the first spectral null. 

While cepstral analysis overcomes part of the difficulty, 

other effects can produce an extremely complicated cepstrum, 

difficult to interpret and inaccurate in itself. Thus this 

method of source depth determination would appear to be of 

limited utility, although the appearance of spectral nulls 

indicating shallow depth might be taken as corroborative 

evidence in the presence of other information. 

*See, for example, Clark (1966). A velocity step of 2.1 to 3.9 

km/sec gives a reflection coefficient of 0.3. The conclusions 

reached here are not intended to be rigorous, but indicative. 
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PROGRAMS 

Three packages are included: the lossless, time-domain 

routine LAYERS; the semi-dispersive, absorptive, frequency- 

domain routine FLAYERS (I); and the dispersive frequency 

routine FLAYERS (11). The first package comprises the 

routines LAYERS, RCTOA, and CONVOLV/POLYDIV. The second, 

FLAYERS (I), RCAFTOA, and CONVOLV/POLYDIV. The third, 

FLAYERS (II), RCAFTOAD, and CONVOLV/POLYDIV. The same 

routine CONVOLV/POLYDIV is used for all three packages. 

Usage of the routines is explained in the introductory 

"comment" statements. The two frequency packages have 

purposely been made interchangeable, the only difference 

In usage being that a storage equivalence is allowed in 

one that is not allowed in the other. The time routine 

convolves with a source function. With the frequency 

routines, the user may do this externally, using CONVOLV, 

if he desires. 

The subroutines are written in FORTRAN-63, a programming 

language of the CDC 1604-B computer. Non-standard external 

symbols appearing in the absorptive routines are ERASE and 

COOL. Calling ERASE (N,X) zeroes N elements of array X. 

Calling COOL (LN, X, SIGN) Fast-Fourier transforms the 

complex array X, to frequency if SIGN - -1.0, to time if 

SIGN = + 1.0, where LN = log2 (number of complex elements in 

X)(Claerbout et al., 1966).  Overall execution time is propor- 
tional to K«M [or to (K + KP)«M, if I0PT = 3].  On the 1604, 

1.25 sec is required for LAYERS, 12.5 sec for FLAYERS (I), 

and 18.0 sec for FLAYERS (II). for K-M = 104.  Less time is 

required if some of the reflection coefficients are zero. 
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